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The Hosoya polynomial of one-quadrilateral carbon

Nanocone
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Let G be a chemical graph with vertex set V (G) and d;(U,V) the distance between vertices U and V inG . The

Hosoya polynomial in variable X of graph G is
{uviev(G)

4. . . , .
z X cl "). In this paper, we give an analytical expression for

calculating the Hosoya polynomial of one-quadrilateral carbon nanocone. Furthermore, a series of distance-based
molecular structure descriptors, such as the well-known Wiener index, the hyper-Wiener index etc., can be easily obtained.
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1. Introduction

The occurrence of hollow carbon structures is a
fascinating  phenomenon.  Except Fullerenes and
nanotubes, carbon nanocones have been observed as caps
on the ends of the nanotubes [1,2], or also as freestanding
structures on a flat graphite surface by Ge and Sattler [3].
Mathematical calculations are necessary to explore
important concepts in chemistry; chemical graph theory is
an important tool for studying molecular structures [4]. In
a sense, this research plays a positive promotive role in
chemistry. A topological index is a real number related to
a structural graph of a molecule, it does not depend on the
labeling or pictorial representation of a graph.

So far, there are many topological indices that have
been proposed, especially distance-based indices, such as
the Wiener index, hyper-Wiener index, Tratch-
Stankevitch-Zefirov index, and so on. They all play
important roles in Quantitative Structure-Activity
Relationship (QSAR) and Quantitative Structure-
Property Relationship (QSPR) studies. The QSAR and
QSPR studies are the areas of chemical research that
focus structure-dependent chemical behavior of
molecules [5,6].

The Wiener index is the oldest one of the distance-
based topological indices of a chemical graph that
correlate with some of the physicochemical properties of
the compound, it was introduced by the chemist HAROLD
WIENER [7] about 60 years ago as a descriptor for
explaining the boiling points of paraffins. The effect of
approximation was surprisingly good. The Wiener index

of a chemical graph G with vertex set V (G) is defined
as:

W (G)= >dsuv),

fuvicv(e)
where dg (U,V) is the distance between vertices U and

vV in G (i.e., the number of edges on a shortest path
connecting U and V), the subscript is omitted when it is
clear from the context.

H. Hosoya introduced a distance-based counting
polynomial named Wiener polynomial [8], but we call it
Hosoya polynomial in honor of H. Hosoya. The Hosoya
polynomial in variable X of a chemical graph G with

vertex set V (G) , is defined as:
H (G, X) - Z XdG(u,V) 7

{uvicV(G)
where the summation is over all (unordered) pairs {U;V}

of distinct vertices in V(G) . Note that there is no

constant term, while it contains the number of vertices as
constant term in some literature.

The Hosoya polynomial not only contains more
information concerning distance in the chemical graph
than any of the hitherto proposed distance-based molecular
structure descriptors [9,10], but also deduces some of

them. For example, the Wiener index W(G) of a

molecular graph G is equal to the first derivative of the
Hosoya polynomial in X =1:

W(G)z%H(G,x) . )

x=1

The chemical applications and mathematical
properties of the Wiener index are well documented [11-

14]. Moreover, the hyper-Wiener index WW (G) [15],
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Tratch-Stankevitch-Zefirov index TSZ(G) [16] can also
be deduced from H (G, X) as follows:

WW(G):Ei XH (G, x) 2)
2 dx? .
_1d
TSZ(G)—aﬁx H (G, Xx) X:l, (3)

It seems that the formulas (2) and (3) were first
reported in [17, 18], respectively. Two classes of more
k

1d
general structure descriptors WO x*TH (G, X)
1ax

x=1
k
and id—k H(G,x)
k! dx -

also studied in Refs. [18, 19]. On the other hand, recently
Bruckler etc. [18] proposed a new class of distance-based
molecular structure descriptors: Q-indices, which can
reflect the fact that any kind of interaction between
physical objects (in particular, between atoms in a
molecule) decrease with increasing distance, and showed
that Q-indices are equal to the Hosoya polynomial. So the
Hosoya polynomial and the quantities derived from it will
play a significant role in QSAR and QSPR researches, and
abundant literature appeared on this topic for the
theoretical consideration [20-25], and computation [17,26-
34].

for positive integer K were

Fig. 1. (a) The one-quadrilateral nanocone CNC,[3] is
represented by solid lines, dotted quadrilaterals indicate
CNC4 [3] ’s recursive construction, dotted rays indicate
(b) Labeling of
vertices in CNC,[3].

CNC,[3] 's symmetric structure;

In this paper we consider about a nanocone with a
quadrilateral in the center, denote by CNC,[n], n is

parameter (see the next section for the details). In 2010
ALl RETA ASHRAFI and FARZANEH GHOLAMI-

NEZHAAD finished the computation of Pl and edge
Szeged indices of CNC,[n] [35]. We shall discuss about

the Hosoya polynomial of CNC,[Nn], and give an explicit

analytical expression for it. Furthermore, a series of
topological indices, such as the Wiener index, the hyper-
Wiener index, etc., can be easily obtained from the
expression.

2. Preliminaries

First, we define a one-quadrilateral carbon nanocone
CNC,[n] from a geometrical view of point. It is a plane

graph and its bounded face boundaries consist of one
quadrilateral and remained hexagons. When

n=1CNC,[n] is exactly a single quadrangle. When

n>2 CNC,[n] is obtained from CNC,[n—1] by

identifying the inner boundary of an additional appropriate
circular hexagonal chain with the outer boundary of

CNC,[n—1], the construction is indicated by dotted
regular quadrangle in Fig. 1(a) for n=3. In a word,
CNC,[n] consists of one quadrangle and N —1 layers of
circular hexagonal chains around it. Evidently (and in the
sequel), for 1<i< j<n, CNC,[i] can be considered

as a substructure (or a subgraph) of CNC,[ j].

Fig. 2. (a) and (b) show distances from vertices in
CNC,[4] to Vo and Vj 4, respectively.

In order to facilitate discussion, we label vertices in
CNC,[n] . First, we partition vertices into levels

0,1,2,--{3”‘2

indicated by dotted curves in Fig. 1(b). From the structure,
when 0<i<n-—2, there are 2n+ 2i +1 vertices in

Vi Vigy Vi o VY from

i,n+i

Jfrom top to bottom, which are

level 1, sayV; _,iys""
left to right; when | =n—1(i.e., the level containing the

whole unique quadrilateral), there are 4N vertices in level
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V. from left

n-1, say v Vi VieViar i Vi

i,—(n+i)r "

to right and the special middle lower vertex V;; when
n<i<|3N=4
2

level I , say, Vi —en-4i-3)r Vi1 Vigr Vigs s

J , there are 12n —8i — 4 vertices in

Vi,6n—4i—3

from left to right and the special middle lower vertex V; ;
) n-2 . .
when | = T , We divide two cases according to

the parity of N. When n is even, there are 12n—8i —5

vertices in level I, say

Vi,—(6n-4i—3)
Vi 03ViosVis oy Vignai_z. When N is odd, there are
12n-8i—-4

Vi,f(6n—4i73)1 ”"Vi,—l’vi,Ol Vi,l i

vertices, say
‘s Vign_si_g and the
special middle lower vertex V; . (See Fig. 1(b)).

By the symmetry of CNC,[n], we just need to
consider N vertices among the vertices on the outer
boundary of CNC,[n]. For example, in Fig. 1(b), we

need to consider V, o, V4,V ,. S0 we define a distance

sequence, denoted by S(K,i), between a special vertex
Vo, (0<k<n-1) and vertices in level i (expect the
special vertex V; (I >n-=1)if itexists) as:
when 0<i<n-1,

(AVos Vi iy A Voo Vi neinen)s A (Vo s Vi i )5

when n Sigrnz_zJ,

(A WVop Vi _enaisy)s A (Vos Vi _naiaypa)s > A (Vo Vi on-ai-a));
Distances between V, , (resp., V,,) and all vertices
in CNC,[4] are shown in Fig. 2(a) (resp., Fig. 2(b)),
which also indicate S (0,i) (resp., S(L,i)) for0<i<5.
For the sake of convenience, in CNC,[n] , for
3n-2

0<k<n-land Ogi§{ J, we define the

distance sequence S(K,i) as the sequence obtained from
S(k,i) by (if necessary) inserting the distance between
Vox and the special vertex V, to some appropriate
position of S(K,i), because the order in the distance

sequence is irrelevant to the discussion of the Hosoya
polynomial of CNC,[n] . Hence S(k,i) is some

distance sequence of distances between V,, and all

vertices in level 1.
To express S(K,i) in a short manner, we define the

following notations. Given nonnegative integers m, N
and S, we define

mTn=mm+1m+2--n  (Mm<n);

m<y,n:=mm-1m-2,---.n  (m>n);
2s terms

m,<>s,n:=m,n,mn,---,m,n (m = n).

Combined Lemma 2.3 in [29] with the structure of
CNC,[n] , we obtain S(k,i) in CNC,[n] for

0<k<n-land 0<i< F’n _ ZJ as follows.

Lemma 1. If n+K iseven, 0<k <1, then
S(k,i) =

(n+2i+k,4,2i,2i-1>1,2i,2i +1,T,n + 2i — k),

0<i<n-2;
(N+2i+k, 4,21 +12i +12i 0,21 -1,2i,T, n+2i
—k), i=n-1

(Bn+k-14,2i +1,2i +1,2i <> 3n—-2i - 2,2i —-1,2i,

n<i< r’n _4J;
2
(3n+k —1,4,2i +1,2i +1,2i > 3n—2i —2,2i -1,2i,
i =fn_2J,n =odd;
2
(Bn+k-14,2i+1,2i <>3n-2i-22i-12i,T,

. LSn—ZJ
i= ,N = even.
2

t3n-k-1),

T3n-k-1),

3n—-k-1),

If n+K iseven, k>2,thenS(k,i) =

(n+2i+k,4,2i,2i -1 >1,2i,2i +1, T, n+ 2i — k),

0<i<n-2
(n+2i+k, 4,20 +1,21 +1,2i ©i,2i-1,2i,T, n+2i
—k), i=n-1

(Bn+k—-1,4,2i +1,2i +1,2i <> 3n—2i —2,2i -1,2i,

2

(6n—2i-3,4,2i +1,2i +1,2i > 3n—2i-1,2i -1),

Pn_kJSisfn_LlJ;
2 2
(6n—2i-3,4,2i +1,2i <> 3n-2i-1,2i 1),
. LSn—ZJ
1= ,N =even;
2
(6n—2i—3,4,2i +1,2i +1,2i <> 3n—2i—1,2i —1),
izfn_zj,n:odd.
2

T3n-k -1),

If n+K isodd, 0<k <2, then S(k,i) =
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(n+2i+k 4,21 +1,2i & i+1,2i +12i+2 T,n+2i -
k), 0<i<n-2
(N+2i+k, 4,21 +22i +22+1 i +12i,2i +1, T,

n+ 2i —k), i=n-1
(Bn+k-14,2i +2,2i +2,2i +1 > 3n—2i —1,2i,2i +1,
3n—4J

2
(Bn+k-14,2i+2,2i +2,2i +1 > 3n—2i —1,2i,2i +1,

i :{3n_2J,n = odd;
2
(Bn+k-14,2i +2,2i +1>3n-2i-1,2i,2i +1,T,3n -

. [Sn—ZJ
i = N = even.
2

n+K isodd, k >3, then S(k,i) =

T3n—k-1), nsis[

T3n-k-1),

k-1),

=

(N+2i+k 4,21 +121 > i +1,2i +1,2i +2 T, n+2i -
k), 0<i<n-2
(N+2i+k, 4,21 +221+22i+1>i+12i,2i+1,T,n
+2i —Kk), i=n-1
(Bn+k —14,2i+2,2i + 2,2 +14> 30— 2i —1,2i,2i +1,
nsisr’n_k_lJ;
2
(6n—2i—2,4,2i + 2,2 + 2,2 +1 > 3n — 2i —1,2i),

[3n—k+1JSiS{3n—4J;
2 2

(6n—2i—2,4,2i +2,2i +1 > 3n - 2i —1,2i),
. LSn—ZJ _
1= ,n=even;
2
(6n—2i—2,4,2i +2,2i + 2,2i +1 <> 3n— 2i —1,2i),
i:f”"zJ,nzodd.
2

Note that the value which appears twice consecutively in
S(k,1) represents the distance the distance between V,

T3n-k-1),

and the special vertex V;.

3. Calculating H(CNC,[n], x)

First, we give some notations. In CNC,[n] , for
0<k<n-1, we denote by H, (n,X) the contribution
of the vertex vy, to H(CNGC,[n],x) . by Hb, (n,x)
the contribution of distances between V,, and the
CNC,[n] (e, vertices
CNC,[n-1] ) to

boundary  vertices in
in CNC,[n] but not in

H(CNC,[n],x), and by Hb(n, X) the contribution of
the boundary vertices to H(CNC,[n], X) .

From the structure of CNC,[n], there are n orbits
of the automorphism group Aut( CNC,[n] ) on the
boundary CNC,[n] . Wwe take
{Vo,01Vo,11Vo,2""1Vo,n-1} as a set of the orbital

representatives. Among all 8 automorphisms of
CNC,[n], each vertex in {VO,l’V0,21“"VO,n—l} has 8

vertices  of

isomorphic images, the vertex V,, has 4 isomorphic

images. Then we can give the expression of Hb(n, X) in

terms of H, (n,x) and Hb, (n,X) as follows.
Lemma 2.

Hb(n,x) = (8§Hk(n,x) +4H,(n,x)) —(4nz_1:
H_bK (n, x) + 2Hb, (N, X)). _

Note that the last term of the right-hand side of the
above expression is the contribution of distances between
two vertices of boundary vertices to H(CNC,[n], x),
which arises because they are counted twice in the first
term of the right-hand side of the above expression.

According to Lemmas 1 and 2, Using the software
MATHEMATICA 7.0, we obtain

Lemma 3. When N iseven,

A2 (x% +1) . 2
(x-1° (x+D(x-1)°
+2nx*" 4 (BN — 2)x° — 2x°" 2 + 2(n— 4) x>+
+(4—6n)x+2(n—1)x*" —4x*"* —5x°"2
—2(N+1)x*™% +3x%3"% —14x%" + 2x3" 4+ 4x").

Hb(n, x) = (2x?

When n is odd,
A2 ngy3
Hb(n, x) = Azfx _ AnxT(x 31)_
(x=1)"(x+1) X(x-1)
4(X3n _ X4n) X3n _ X4n 2

(x—-1(x+1) (x-1*(x+Dx (x+1)
1
(x-1°
X224 203 _ 4y | 3143 _ oy B2 _

DXL _oyan2y.

((6n — 4)Xx — BnX°® + 2X" + 4x*™ — 4"

Since CNC,[n] can be considered as a graph
obtained from its isometric subgraph CNC,[n—1] (i.e.,
dCNCA[nfl](X, y)=dCNC4[n](X, y) for vertices X,y in
CNC,[n—1] ) by adding the boundary vertices of
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CNC,[n], we have

Lemma 4.
H(CNC,[n],x) = D> Hb(j,x).
j=1
Note that the initial condition

H(CNC,[1], X) = 2X* + 4x.
So we can get the main theorem: the Hosoya
polynomial of CNC,[n].

Theorem 1. Let CNC,[n] be the one-quadrilateral
carbon nanocone. Then when N is even,

2(x*" 7+ x*"T —nx® + x° -1)
(X=D3(x+D)*(x* + x* +1)
. 3n*x(x® -1) 2x—2
(X+D)(x-D*(x* +x*+1) x*+x*+x+1
nx(x® —1)
(x—D*(x* + x> +1)

H(CNC,[n],x) =

(x> =3x=2)x*" +

2x°
(Xx=1)*(x+D*(x* + x> +1)
+5x° —2x" + 2x% + x° = 2x""(x° —4x* —4x° +
4x% —x? —=3x") = x*"(3x +14x° + 6x° +14x") +
22X (2x* +x° +2x° + x" +x%));

(x> —1+2x°> —3x*

when N is odd,

2(X4n+2 + X4n+7 _ nXZn + X6 _1)

H(CNC,[n], x) = (X=1)°(X+1)%(x* + X2 +1)

N 3n’x(x°* -1) nx(x® —1)
(X+D(x-D*(x* +x*+1)  (x=1*
1 2X7"(X° — x — 4x* — 4x°)

i+l (X=D*x+D (¢ + X2 +D)
2x% + X%+ 2x° (L+ x* + 2x> = 3x* +5x° — 2x")
+ X" (Bx +14x% +6x° +14x") — 2x*" (2x* +
x° +2x° +x" +x%)).

In what follows, we give some corollaries of Theorem
1. First, we define a notation Z associated with an integer

N as follows. When N isodd, Z=15; when n is even,
z=0. From Theorem 1, we immediately obtain the

Wiener index W (CNC,[n]) of CNC,[n].

Corollary 1. Let CNC,[n] be the one-quadrilateral
carbon nanocone. Then

W (CNC,[n]) = %(87n5 —20n°+15n* -37n+12) .

Similarly, we can deduce the Hyper-Wiener index,
Tratch-Stankevitch-Zefirov index of one-quadrilateral

carbon nanocone CNC,[n] as follows.

Corollary 2. Let CNC,[n] be the one-quadrilateral
carbon nanocone. Then

WW (CNC,[n]) = %(87n5 +60n* —20n* -37n+7z) -

TSZ(CNC,[n]) = %(87n5 +60n*-20n®-37n+72) .

Acknowledgment

The work is partially supported by NSFC (grant Nos.
10826075, 11001113).

References

[1] S. lijima, T. Ichihashi, Y. Ando, Nature, 356, 776
(1992).
[2] S. lijima, T. Ichihashi, Nature, 363, 603 (1993).
[3] M. Ge, K. Sattler, Chem. Phy. Lett., 220, 192 (1994).
[4] N. Trinajsti¢, Chemical Graph Theory, 2" ed. CRC
Press: Boca Raton, FL. (1992).
[5] M. V. Diudea, I. Gutman, L. Jantschi, Nova Science:
New York (2001).
[6] R. Todeschini, V. Consonni, Wiley-vch: Weinheim,
(2000).
[7] H. Wiener, J. Amer. Chem. Soc., 69, 17 (1947).
[8] H. Hosoya, Discrete Appl. Math., 19, 239 (1988).
[9] B. Lugié¢, I. Lukovits, S. Nikoli¢, N. Trinajsti¢, J.
Chem. Inf. Comput. Sci., 41, 527 (2001).
[10] Z. Mihali¢, N. Trinajsti¢, J. Chem. Educ., 69, 701
(1992).
[11] A. A. Dobrynin, R. Entringer, . Gutman, Act Appl.
Math., 66, 211 (2001).
[12] A. A. Dobrynin, I. Gutman, S. Klavzar, P. Zigert, Acta
Appl. Math., 72, 247 (2002).
[13] I. Gutman, S. KlavZzar, B. Mohar, (eds.) MATCH
Commun. Math. Comput. Chem. 35, 1 (1997).
[14] I. Gutman, S. KlavZzar, B. Mohar (eds.) Discrete Appl.
Math., 80(1), 1 (1997).
[15] D. J. Klein, I. Lukovits, I. Gutman, J. Chem. Inf.
Comput. Sci. 35, 50 (1995).
[16] S. S. Tratch, M. I. Stankevitch, N. S. Zefirov, J.
Comput. Chem., 11, 899 (1990).
[17] S.-J. Xu, H. Zhang, M. V. Diudea, MATCH Commun.
Math. Comput. Chem., 57, 443 (2007).
[18] D. Plavsi¢, S. Nikoli¢, N. Trinajsti¢, Z. Mihali¢, J.
Math. Chem., 12, 235 (1993).
[19] E. V. Konstantinova, M. V. Diudea, Croat. Chem.
Acta, 73, 383 (2000).
[20] I. Gutman, E. Estrada, O. Ivanciuc, Graph Theory
Notes (New York), 36, 7 (1999).
[21] I. Gutman, Y. Zhang, M. Dehmer, A. llic, Univ.
Kragujevac: Kragujevac, 49 (2012).



The Hosoya polynomial of one-quadrilateral carbon nanocone 775

[22] X. Li, G. Wang, H. Bian, R. Hu, MATCH Commun.
Math. Comput. Chem., 67, 357 (2012).

[23] S.-J. Xu, H. Zhang, Discrete Appl. Math., 156, 2930
(2008).

[24] S.-J. Xu, H. Zhang, Discrete Appl. Math., 156, 2407
(2008).

[25] W. Yan, B. Y. Yang, Y.-N. Yeh, Appl. Math. Lett., 20,
290 (2007).

[26] J. Chen, S.-J. Xu, H. Zhang, Int. J. Quantum Chem.,
109, 641 (2009).

[27] M. Eliasi, B. Taeri, J. Serb. Chem. Soc., 73(3), 311
(2008).

[28] S. Klavzar, M. Mollard, MATCH Commun. Math.
Comput. Chem., 68, 311 (2012).

[29] X. Lin, S.-J. Xu, Y.-N. Yeh, MATCH Commun. Math.
Comput. Chem., 69, 755 (2013).

[30] B. E. Sagan, Y.-N. Yeh, P. Zhang, Int. J. Quantum
Chem., 60, 959 (1996).

[31] S.-J. Xu, H. Zhang, Int. J. Quantum Chem., 107, 586
(2007).

[32] S.-J. Xu, H. Zhang, J. Math. Chem., 45, 488 (2009).

[33] B. Y. Yang, Y.-N. Yeh, Int. J. Quantum Chem., 99, 80
(2004).

[34] Y. Zhang, I. Gutman, J. Liu, Z. Mu, MATCH
Commun. Math. Comput. Chem., 67, 347 (2012).

[35] A. R. Ashrafi, F. Gholami-nezhaad, Optoelectron.
Adv. Mater. — Rapid Comm., 4(4), 531 (2010).

“Corresponding author: shjxu@Izu.edu.cn



